
MEASURE AND INTEGRATION – REEXAMINATION SOLUTIONS
Instructor: Daniel Valesin

1. Let Ω = N, A = P (Ω) (the set of all subsets of Ω) and let pn, n ∈ N, be nonnegative numbers.
Show that

µ(A) =
∑
n∈A

pn, A ⊂ Ω,

defines a measure on Ω.
Solution. Since µ(A) is a sum of non-negative numbers, it is always non-negative (and possibly
∞). So µ is a function that assumes values in [0,∞]. We have µ(∅) = 0 since the sum that
defines µ is empty in this case. Let An ∈ A, n ∈ N be pairwise disjoint sets. We have

µ

(
∞⋃
n=1

An

)
=

∑
n∈∪∞n=1An

pn =
∞∑
n=1

∑
m∈An

pm =
∞∑
n=1

µ(An)

(in the second equality, we have used the fact, proven in Analysis, that any ordering of a sum
of non-negative numbers produces the same result).

2. Using the definition of Lebesgue measure, prove that for any Borel set A ⊂ Rn and x ∈ Rn, we
have

m(A) = m(A+ x),

where
A+ x = {y + x : y ∈ A}. (♣)

Solutions. Let R1, R2, . . . be rectangles covering A + x. Then, −x + R1,−x + R2, . . . are
rectangles covering A, so ∑

`(Rn) =
∑

`(−x+Rn) ≥ m(A).

Taking the infimum over all covers of A + x, we obtain m(A + x) ≥ m(A). Using the same
inequality with x replaced by −x (noting that A = (A+ x)− x), we obtain m(A) ≥ m(A+ x).

3. Let (Ω,A, µ) be a measure space such that {ω} ∈ A for all ω ∈ Ω. Let f : Ω → R be a
non-negative function and assume that there exists a countable set E ⊂ Ω such that f(ω) = 0
for all ω /∈ E. Prove that f is measurable and that∫

Ω

f dµ =
∑
x∈E

f(ω)µ({ω}).

Solutions. Any countable subset of Ω is in A, so E and any subset of E are in A. Fix
B ∈ B(R); we have

f−1(B) =

{
{ω ∈ E : f(ω) ∈ B} if 0 /∈ B;

{ω ∈ E : f(ω) ∈ B} ∪ Ec if 0 ∈ B.

That is, f−1(B) is either a subset of E or a subset of E together with Ec; in any case,
f−1(B) ∈ A, so f is measurable.

Enumerate E = {d1, d2, . . .} (assuming here that E is infinite; the finite case is treated simi-
larly). Then,∫

Ω

f dµ =

∫
Ω

f ·1∪∞n=1{dn} dµ =

∫
Ω

f ·

(
∞∑
n=1

1{dn}

)
dµ =

∞∑
n=1

∫
Ω

f 1{dn} dµ =
∞∑
n=1

f(dn)·µ({dn}),

where the next-to-last equality follows from the Monotone Convergence Theorem applied to
series of functions (which is applicable here because f is positive).



4. (a) Let µ be a σ-finite measure on the measurable space (R,B), where B denotes the Borel
σ-algebra on R. Prove that E = {x ∈ R : µ({x}) > 0} is countable.

(b) Let ν be another σ-finite measure on (R,B). Let

D = {(x, x) : x ∈ R}

be the diagonal of R2. Show that

(µ⊗ ν)(D) =
∑
x∈E

µ({x}) · ν({x}).

Solutions.

(a) Since µ is σ-finite, there exists a sequence of measurable sets Ω1 ⊂ Ω2 ⊂ · · · with ∪kΩk = R
and µ(Ωk) <∞ for all k. We have

{x ∈ R : µ({x}) > 0} =
∞⋃
n=1

∞⋃
k=1

{x ∈ Ωk : µ({x}) > 1/n},

so it suffices to prove that for all n and k, the set {x ∈ Ωk : µ({x}) > 1/n} is countable.
To prove this, let A ⊂ {x ∈ Ωk : µ({x}) > 1/n} be any countable set; then,

∞ > µ(Ωk) ≥ µ(A) =
∑
x∈A

µ({x}) ≥ 1

n
#A,

so A is finite. This proves that {x ∈ Ωk : µ({x}) > 1/n} is finite.

(b)

(µ⊗ ν)(D) =

∫
R
µ(Dy) ν(dy) =

∫
R
µ({y}) ν(dy) =

∫
E

µ({y}) ν(dy),

where we have used part (a) and the previous exercise.

5. Let A ⊂ Rn be a compact (that is, closed and bounded) set and let f : Rn → R be an integrable
function (with respect to Lebesgue measure). Prove that

lim
x→∞

∫
A+x

f dm = 0,

where A+ x is as in (♣).
Solution. For r > 0, let Br = {x ∈ Rn : ‖x‖ ≤ r}. The sequence of functions fn = |f | · 1(Bn)c

converges pointwise to 0, and the convergence is dominated by |f |, which is integrable. Hence,
by the Dominated Convergence Theorem,

∫
fn dm

n→∞−−−→ 0. Now, given ε > 0, choose n such
that

∫
fn dm < ε, and then (using the fact that A is bounded) choose s such that, if ‖x‖ ≥ s,

then A+ x ⊂ (Bn)c. Then, if ‖x‖ ≥ s,∣∣∣∣∫
A+x

f dm

∣∣∣∣ ≤ ∫
A+x

|f | dm ≤
∫

(Bn)c
|f | dm =

∫
Rn

fn dm < ε.

6. Let fn : R → R, n ∈ N and f : R → R be integrable functions (with respect to Lebesgue

measure). Assume that fn → f uniformly and the limit lim
n→∞

∫
R
fn dm exists. Can we conclude

that this limit is equal to
∫
R f dm? Prove or give a counterexample.

Solution. A counterexample is obtained by letting fn = 1
n
· 1[0,n], which converges uniformly

to f ≡ 0, and lim
∫
fn dm = 1 6= 0 =

∫
f dm.



7. Let (Ω,A, µ) be a measure space and let 1 ≤ p < ∞. Let fn : Ω → R be a sequence of
measurable functions converging pointwise to f : Ω → R. Assume that |fn| ≤ g for some
g ∈ Lp(Ω) and all n. Show that f ∈ Lp(Ω) and that ‖fn − f‖p → 0 as n→∞.
Solution. We have fp

n → fp pointwise and, for all n, |fp
n| ≤ |gp|. Note that, since g is assumed

to belong to Lp(Ω), we have
∫

Ω
|g|p dµ <∞, that is, |gp| is integrable. Hence, the Dominated

Convergence Theorem implies that fp is integrable, so f ∈ Lp(Ω).

Now note that |fn − f | → 0 pointwise and, since |f | ≤ g,

|fn − f |p ≤ (|fn|+ |f |)p ≤ (2|g|)p

and the right-hand side is integrable as already observed. Again using the Dominated Conver-
gence Theorem, we conclude that

∫
Ω
|fn − f |p dµ→ 0, so ‖fn − f‖p → 0.


