MEASURE AND INTEGRATION – REEXAMINATION SOLUTIONS Instructor: Daniel Valesin

1. Let $\Omega = \mathbb{N}$, $\mathcal{A} = P(\Omega)$ (the set of all subsets of Ω) and let $p_n, n \in \mathbb{N}$, be nonnegative numbers. Show that

$$\mu(A) = \sum_{n \in A} p_n, \quad A \subset \Omega,$$

defines a measure on Ω .

Solution. Since $\mu(A)$ is a sum of non-negative numbers, it is always non-negative (and possibly ∞). So μ is a function that assumes values in $[0, \infty]$. We have $\mu(\emptyset) = 0$ since the sum that defines μ is empty in this case. Let $A_n \in \mathcal{A}$, $n \in \mathbb{N}$ be pairwise disjoint sets. We have

$$\mu\left(\bigcup_{n=1}^{\infty} A_n\right) = \sum_{n \in \bigcup_{n=1}^{\infty} A_n} p_n = \sum_{n=1}^{\infty} \sum_{m \in A_n} p_m = \sum_{n=1}^{\infty} \mu(A_n)$$

(in the second equality, we have used the fact, proven in Analysis, that any ordering of a sum of non-negative numbers produces the same result).

2. Using the definition of Lebesgue measure, prove that for any Borel set $A \subset \mathbb{R}^n$ and $x \in \mathbb{R}^n$, we have

$$m(A) = m(A+x),$$

where

$$A + x = \{y + x : y \in A\}.$$
 (\$)

Solutions. Let R_1, R_2, \ldots be rectangles covering A + x. Then, $-x + R_1, -x + R_2, \ldots$ are rectangles covering A, so

$$\sum \ell(R_n) = \sum \ell(-x + R_n) \ge m(A).$$

Taking the infimum over all covers of A + x, we obtain $m(A + x) \ge m(A)$. Using the same inequality with x replaced by -x (noting that A = (A + x) - x), we obtain $m(A) \ge m(A + x)$.

3. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space such that $\{\omega\} \in \mathcal{A}$ for all $\omega \in \Omega$. Let $f : \Omega \to \mathbb{R}$ be a non-negative function and assume that there exists a countable set $E \subset \Omega$ such that $f(\omega) = 0$ for all $\omega \notin E$. Prove that f is measurable and that

$$\int_{\Omega} f \, d\mu = \sum_{x \in E} f(\omega) \mu(\{\omega\}).$$

Solutions. Any countable subset of Ω is in \mathcal{A} , so E and any subset of E are in \mathcal{A} . Fix $B \in \mathcal{B}(\mathbb{R})$; we have

$$f^{-1}(B) = \begin{cases} \{\omega \in E : f(\omega) \in B\} & \text{if } 0 \notin B; \\ \{\omega \in E : f(\omega) \in B\} \cup E^c & \text{if } 0 \in B. \end{cases}$$

That is, $f^{-1}(B)$ is either a subset of E or a subset of E together with E^c ; in any case, $f^{-1}(B) \in \mathcal{A}$, so f is measurable.

Enumerate $E = \{d_1, d_2, \ldots\}$ (assuming here that E is infinite; the finite case is treated similarly). Then,

$$\int_{\Omega} f \, d\mu = \int_{\Omega} f \cdot \mathbb{1}_{\bigcup_{n=1}^{\infty} \{d_n\}} \, d\mu = \int_{\Omega} f \cdot \left(\sum_{n=1}^{\infty} \mathbb{1}_{\{d_n\}}\right) \, d\mu = \sum_{n=1}^{\infty} \int_{\Omega} f \, \mathbb{1}_{\{d_n\}} \, d\mu = \sum_{n=1}^{\infty} f(d_n) \cdot \mu(\{d_n\}),$$

where the next-to-last equality follows from the Monotone Convergence Theorem applied to series of functions (which is applicable here because f is positive).

- 4. (a) Let μ be a σ -finite measure on the measurable space $(\mathbb{R}, \mathcal{B})$, where \mathcal{B} denotes the Borel σ -algebra on \mathbb{R} . Prove that $E = \{x \in \mathbb{R} : \mu(\{x\}) > 0\}$ is countable.
 - (b) Let ν be another σ -finite measure on $(\mathbb{R}, \mathcal{B})$. Let

$$D = \{(x, x) : x \in \mathbb{R}\}$$

be the diagonal of \mathbb{R}^2 . Show that

$$(\mu \otimes \nu)(D) = \sum_{x \in E} \mu(\{x\}) \cdot \nu(\{x\}).$$

Solutions.

(a) Since μ is σ -finite, there exists a sequence of measurable sets $\Omega_1 \subset \Omega_2 \subset \cdots$ with $\bigcup_k \Omega_k = \mathbb{R}$ and $\mu(\Omega_k) < \infty$ for all k. We have

$$\{x \in \mathbb{R} : \mu(\{x\}) > 0\} = \bigcup_{n=1}^{\infty} \bigcup_{k=1}^{\infty} \{x \in \Omega_k : \mu(\{x\}) > 1/n\},\$$

so it suffices to prove that for all n and k, the set $\{x \in \Omega_k : \mu(\{x\}) > 1/n\}$ is countable. To prove this, let $A \subset \{x \in \Omega_k : \mu(\{x\}) > 1/n\}$ be any countable set; then,

$$\infty > \mu(\Omega_k) \ge \mu(A) = \sum_{x \in A} \mu(\{x\}) \ge \frac{1}{n} \# A,$$

so A is finite. This proves that $\{x \in \Omega_k : \mu(\{x\}) > 1/n\}$ is finite.

(b)

$$(\mu\otimes\nu)(D)=\int_{\mathbb{R}}\mu(D^y)\;\nu(dy)=\int_{\mathbb{R}}\mu(\{y\})\;\nu(dy)=\int_{E}\mu(\{y\})\;\nu(dy),$$

where we have used part (a) and the previous exercise.

5. Let $A \subset \mathbb{R}^n$ be a compact (that is, closed and bounded) set and let $f : \mathbb{R}^n \to \mathbb{R}$ be an integrable function (with respect to Lebesgue measure). Prove that

$$\lim_{x \to \infty} \int_{A+x} f \, dm = 0,$$

where A + x is as in (\clubsuit).

Solution. For r > 0, let $B_r = \{x \in \mathbb{R}^n : ||x|| \le r\}$. The sequence of functions $f_n = |f| \cdot \mathbb{1}_{(B_n)^c}$ converges pointwise to 0, and the convergence is dominated by |f|, which is integrable. Hence, by the Dominated Convergence Theorem, $\int f_n dm \xrightarrow{n \to \infty} 0$. Now, given $\varepsilon > 0$, choose n such that $\int f_n dm < \varepsilon$, and then (using the fact that A is bounded) choose s such that, if $||x|| \ge s$, then $A + x \subset (B_n)^c$. Then, if $||x|| \ge s$,

$$\left| \int_{A+x} f \, dm \right| \leq \int_{A+x} |f| \, dm \leq \int_{(B_n)^c} |f| \, dm = \int_{\mathbb{R}^n} f_n \, dm < \varepsilon.$$

6. Let $f_n : \mathbb{R} \to \mathbb{R}$, $n \in \mathbb{N}$ and $f : \mathbb{R} \to \mathbb{R}$ be integrable functions (with respect to Lebesgue measure). Assume that $f_n \to f$ uniformly and the limit $\lim_{n \to \infty} \int_{\mathbb{R}} f_n \, dm$ exists. Can we conclude that this limit is equal to $\int_{\mathbb{R}} f \, dm$? Prove or give a counterexample. Solution. A counterexample is obtained by letting $f_n = \frac{1}{n} \cdot \mathbb{1}_{[0,n]}$, which converges uniformly to $f \equiv 0$, and $\lim \int f_n \, dm = 1 \neq 0 = \int f \, dm$. 7. Let $(\Omega, \mathcal{A}, \mu)$ be a measure space and let $1 \leq p < \infty$. Let $f_n : \Omega \to \mathbb{R}$ be a sequence of measurable functions converging pointwise to $f : \Omega \to \mathbb{R}$. Assume that $|f_n| \leq g$ for some $g \in \mathcal{L}^p(\Omega)$ and all n. Show that $f \in \mathcal{L}^p(\Omega)$ and that $||f_n - f||_p \to 0$ as $n \to \infty$.

Solution. We have $f_n^p \to f^p$ pointwise and, for all $n, |f_n^p| \leq |g^p|$. Note that, since g is assumed to belong to $\mathcal{L}^p(\Omega)$, we have $\int_{\Omega} |g|^p d\mu < \infty$, that is, $|g^p|$ is integrable. Hence, the Dominated Convergence Theorem implies that f^p is integrable, so $f \in \mathcal{L}^p(\Omega)$.

Now note that $|f_n - f| \to 0$ pointwise and, since $|f| \le g$,

$$|f_n - f|^p \le (|f_n| + |f|)^p \le (2|g|)^p$$

and the right-hand side is integrable as already observed. Again using the Dominated Convergence Theorem, we conclude that $\int_{\Omega} |f_n - f|^p \, d\mu \to 0$, so $||f_n - f||_p \to 0$.